**Author**: Carlo Alabiso

**Publisher:**Springer Nature

**ISBN:**3030674177

**Category :**Science

**Languages :**en

**Pages :**328

Skip to content
## Monsters Journal eBook

# A Primer on Hilbert Space Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. **Download A Primer on Hilbert Space Theory PDF full book**. Access full book title **A Primer on Hilbert Space Theory** by Carlo Alabiso. Download full books in PDF and EPUB format.
## A Primer on Hilbert Space Theory

**Author**: Carlo Alabiso

**Publisher:** Springer Nature

**ISBN:** 3030674177

**Category : **Science

**Languages : **en

**Pages : **328

**Book Description**

This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors’s lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

## A Primer on Hilbert Space Theory

**Author**: Carlo Alabiso

**Publisher:** Springer Nature

**ISBN:** 3030674177

**Category : **Science

**Languages : **en

**Pages : **328

**Book Description**

This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors’s lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

## A Primer on Hilbert Space Operators

**Author**: Piotr Sołtan

**Publisher:** Springer

**ISBN:** 3319920618

**Category : **Mathematics

**Languages : **en

**Pages : **200

**Book Description**

The book concisely presents the fundamental aspects of the theory of operators on Hilbert spaces. The topics covered include functional calculus and spectral theorems, compact operators, trace class and Hilbert-Schmidt operators, self-adjoint extensions of symmetric operators, and one-parameter groups of operators. The exposition of the material on unbounded operators is based on a novel tool, called the z-transform, which provides a way to encode full information about unbounded operators in bounded ones, hence making many technical aspects of the theory less involved.

## Operators on Hilbert Space

**Author**: V. S. Sunder

**Publisher:** Springer

**ISBN:** 9811018162

**Category : **Mathematics

**Languages : **en

**Pages : **100

**Book Description**

The primarily objective of the book is to serve as a primer on the theory of bounded linear operators on separable Hilbert space. The book presents the spectral theorem as a statement on the existence of a unique continuous and measurable functional calculus. It discusses a proof without digressing into a course on the Gelfand theory of commutative Banach algebras. The book also introduces the reader to the basic facts concerning the various von Neumann–Schatten ideals, the compact operators, the trace-class operators and all bounded operators.

## Geometric Science of Information

**Author**: Frank Nielsen

**Publisher:** Springer

**ISBN:** 3030269809

**Category : **Computers

**Languages : **en

**Pages : **770

**Book Description**

This book constitutes the proceedings of the 4th International Conference on Geometric Science of Information, GSI 2019, held in Toulouse, France, in August 2019. The 79 full papers presented in this volume were carefully reviewed and selected from 105 submissions. They cover all the main topics and highlights in the domain of geometric science of information, including information geometry manifolds of structured data/information and their advanced applications.

## A Primer for a Secret Shortcut to PDEs of Mathematical Physics

**Author**: Des McGhee

**Publisher:** Springer Nature

**ISBN:** 3030473333

**Category : **Mathematics

**Languages : **en

**Pages : **191

**Book Description**

This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach. The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master’s level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.

## Advances in Information and Communication

**Author**: Kohei Arai

**Publisher:** Springer

**ISBN:** 303012388X

**Category : **Technology & Engineering

**Languages : **en

**Pages : **1061

**Book Description**

This book presents a remarkable collection of chapters that cover a wide range of topics in the areas of information and communication technologies and their real-world applications. It gathers the Proceedings of the Future of Information and Communication Conference 2019 (FICC 2019), held in San Francisco, USA from March 14 to 15, 2019. The conference attracted a total of 462 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. Following a double-blind peer review process, 160 submissions (including 15 poster papers) were ultimately selected for inclusion in these proceedings. The papers highlight relevant trends in, and the latest research on: Communication, Data Science, Ambient Intelligence, Networking, Computing, Security, and the Internet of Things. Further, they address all aspects of Information Science and communication technologies, from classical to intelligent, and both the theory and applications of the latest technologies and methodologies. Gathering chapters that discuss state-of-the-art intelligent methods and techniques for solving real-world problems, along with future research directions, the book represents both an interesting read and a valuable asset.

## A Basis Theory Primer

**Author**: Christopher Heil

**Publisher:** Springer Science & Business Media

**ISBN:** 0817646868

**Category : **Mathematics

**Languages : **en

**Pages : **549

**Book Description**

This textbook is a self-contained introduction to the abstract theory of bases and redundant frame expansions and their use in both applied and classical harmonic analysis. The four parts of the text take the reader from classical functional analysis and basis theory to modern time-frequency and wavelet theory. Extensive exercises complement the text and provide opportunities for learning-by-doing, making the text suitable for graduate-level courses. The self-contained presentation with clear proofs is accessible to graduate students, pure and applied mathematicians, and engineers interested in the mathematical underpinnings of applications.

## Hilbert Space Operators in Quantum Physics

**Author**: Jirí Blank

**Publisher:** Springer Science & Business Media

**ISBN:** 9781563961427

**Category : **Science

**Languages : **en

**Pages : **626

**Book Description**

Market: Mathematicians, researchers, teachers, and graduate students specializing in quantum physics, mathematical physics, and applied mathematics. "I really enjoyed reading this work. It is very well written, by three real experts in the field. It stands quite alone....The translation is remarkably good." John R. Taylor, University of Colorado Based on lectures delivered over the past two decades, this book explains in detail the theory of linear Hilbert-space operators and its uses in quantum physics. The central mathematical tool of this book is the spectral theory of self-adjoint operators, which together with functional analysis and an introduction to the theory of operator sets and algebras, is used in a systematic analysis of the operator aspect of quantum theory. In addition, the theory of Hilbert-space operators is discussed in conjunction with various applications such as Schrodinger operators and scattering theory.

## Design and analysis of a content-based image retrieval system

**Author**: Hernández Mesa, Pilar

**Publisher:** KIT Scientific Publishing

**ISBN:** 3731506920

**Category : **

**Languages : **en

**Pages : **270

**Book Description**

## Structure of Hilbert Space Operators

**Author**: Chunlan Jiang

**Publisher:** World Scientific

**ISBN:** 9812566163

**Category : **Science

**Languages : **en

**Pages : **262

**Book Description**

This book exposes the internal structure of non-self-adjoint operators acting on complex separable infinite dimensional Hilbert space, by analyzing and studying the commutant of operators. A unique presentation of the theorem of Cowen-Douglas operators is given. The authors take the strongly irreducible operator as a basic model, and find complete similarity invariants of Cowen-Douglas operators by using K-theory, complex geometry and operator algebra tools.

eBook in PDF, ePub, Mobi and Kindle Read

This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors’s lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors’s lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.

The book concisely presents the fundamental aspects of the theory of operators on Hilbert spaces. The topics covered include functional calculus and spectral theorems, compact operators, trace class and Hilbert-Schmidt operators, self-adjoint extensions of symmetric operators, and one-parameter groups of operators. The exposition of the material on unbounded operators is based on a novel tool, called the z-transform, which provides a way to encode full information about unbounded operators in bounded ones, hence making many technical aspects of the theory less involved.

The primarily objective of the book is to serve as a primer on the theory of bounded linear operators on separable Hilbert space. The book presents the spectral theorem as a statement on the existence of a unique continuous and measurable functional calculus. It discusses a proof without digressing into a course on the Gelfand theory of commutative Banach algebras. The book also introduces the reader to the basic facts concerning the various von Neumann–Schatten ideals, the compact operators, the trace-class operators and all bounded operators.

This book constitutes the proceedings of the 4th International Conference on Geometric Science of Information, GSI 2019, held in Toulouse, France, in August 2019. The 79 full papers presented in this volume were carefully reviewed and selected from 105 submissions. They cover all the main topics and highlights in the domain of geometric science of information, including information geometry manifolds of structured data/information and their advanced applications.

This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach. The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master’s level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.

This book presents a remarkable collection of chapters that cover a wide range of topics in the areas of information and communication technologies and their real-world applications. It gathers the Proceedings of the Future of Information and Communication Conference 2019 (FICC 2019), held in San Francisco, USA from March 14 to 15, 2019. The conference attracted a total of 462 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. Following a double-blind peer review process, 160 submissions (including 15 poster papers) were ultimately selected for inclusion in these proceedings. The papers highlight relevant trends in, and the latest research on: Communication, Data Science, Ambient Intelligence, Networking, Computing, Security, and the Internet of Things. Further, they address all aspects of Information Science and communication technologies, from classical to intelligent, and both the theory and applications of the latest technologies and methodologies. Gathering chapters that discuss state-of-the-art intelligent methods and techniques for solving real-world problems, along with future research directions, the book represents both an interesting read and a valuable asset.

This textbook is a self-contained introduction to the abstract theory of bases and redundant frame expansions and their use in both applied and classical harmonic analysis. The four parts of the text take the reader from classical functional analysis and basis theory to modern time-frequency and wavelet theory. Extensive exercises complement the text and provide opportunities for learning-by-doing, making the text suitable for graduate-level courses. The self-contained presentation with clear proofs is accessible to graduate students, pure and applied mathematicians, and engineers interested in the mathematical underpinnings of applications.

Market: Mathematicians, researchers, teachers, and graduate students specializing in quantum physics, mathematical physics, and applied mathematics. "I really enjoyed reading this work. It is very well written, by three real experts in the field. It stands quite alone....The translation is remarkably good." John R. Taylor, University of Colorado Based on lectures delivered over the past two decades, this book explains in detail the theory of linear Hilbert-space operators and its uses in quantum physics. The central mathematical tool of this book is the spectral theory of self-adjoint operators, which together with functional analysis and an introduction to the theory of operator sets and algebras, is used in a systematic analysis of the operator aspect of quantum theory. In addition, the theory of Hilbert-space operators is discussed in conjunction with various applications such as Schrodinger operators and scattering theory.

This book exposes the internal structure of non-self-adjoint operators acting on complex separable infinite dimensional Hilbert space, by analyzing and studying the commutant of operators. A unique presentation of the theorem of Cowen-Douglas operators is given. The authors take the strongly irreducible operator as a basic model, and find complete similarity invariants of Cowen-Douglas operators by using K-theory, complex geometry and operator algebra tools.